Grape Leaves Disease Detection

Built a Deep Learning model using TensorFlow and Keras for grape leaf disease detection

Grape Leaves Disease Detection
Photo by Sasha Kolesnik on Dribbble

Aim

To develop a Deep Learning model to identify diseased grape leaves using python programming language and Deep learning libraries

Prerequisites

Before getting started, you should have a good understanding of:



  1. Python programming language
  2. Deep Learning Libraries(Tensorflow, Keras, OpenCV)

Dataset

Link to download the dataset:

URL: https://cainvas-static.s3.amazonaws.com/media/user_data/vomchaithany/Grapes-Leaf-Disease-data.zip

get and unzip the data

!wget -N "https://cainvas-static.s3.amazonaws.com/media/user_data/vomchaithany/Grapes-Leaf-Disease-data.zip"
!unzip -o Grapes-Leaf-Disease-data.zip
!rm Grapes-Leaf-Disease-data.zip
view raw gistfile1.txt hosted with ❤ by GitHub

output:

--2021-06-28 13:36:55--  https://cainvas-static.s3.amazonaws.com/media/user_data/vomchaithany/Grapes-Leaf-Disease-data.zip
Resolving cainvas-static.s3.amazonaws.com (cainvas-static.s3.amazonaws.com)... 52.219.64.72
Connecting to cainvas-static.s3.amazonaws.com (cainvas-static.s3.amazonaws.com)|52.219.64.72|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 23864365 (23M) [application/zip]
Saving to: ‘Grapes-Leaf-Disease-data.zip’
Grapes-Leaf-Disease 100%[===================>]  22.76M  81.8MB/s    in 0.3s
2021-06-28 13:36:55 (81.8 MB/s) - ‘Grapes-Leaf-Disease-data.zip’ saved [23864365/23864365]

Preparing data for the model

we assign train data to dirtrain and test data to dirtest

dirtrain = 'train'
dirtest = 'test'
view raw gistfile1.txt hosted with ❤ by GitHub

we are going to deal with 4 categories :

  1. Black_rot
  2. Esca_(Black_Measles)
  3. Health
  4. Leaf_blight_(Isariopsis_Leaf_Spot)

for c in categories:
path=os.path.join(dirtrain,c)
for i in os.listdir(path):
img_array=cv2.imread(os.path.join(path,i))
print(img_array.shape)
plt.imshow(img_array)
plt.show()
break
break
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Preparing data for model
Preparing data for model

Converting the images into arrays and storing them with labels

#train data
training_data = []
def create_training_data():
count = []
for c in categories:
path = os.path.join(dirtrain,c)
class_num = categories.index(c)
c = 0
for i in os.listdir(path):
c = c+1
try:
img_array = cv2.imread(os.path.join(path,i))
training_data.append([img_array,class_num])
except Exception as e:
pass
count.append(c)
return count
count_train=create_training_data()
#test data
testing_data = []
def create_testing_data():
count=[]
for c in categories:
path = os.path.join(dirtest,c)
class_num = categories.index(c)
c = 0
for i in os.listdir(path):
c = c+1
try:
img_array = cv2.imread(os.path.join(path,i))
testing_data.append([img_array,class_num])
except Exception as e:
pass
count.append(c)
return count
count_test=create_testing_data()
view raw gistfile1.txt hosted with ❤ by GitHub

shuffling the data

random.shuffle(training_data)
random.shuffle(testing_data)
view raw gistfile1.txt hosted with ❤ by GitHub

Resizing the images

x_train = []
y_train = []
x_test = []
y_test = []
view raw gistfile1.txt hosted with ❤ by GitHub

for features, label in training_data:
x_train.append(features)
y_train.append(label)'
x_train=np.array(x_train).reshape(-1,256,256,3)
for features, label in testing_data:
x_test.append(features)
y_test.append(label)
x_test = np.array(x_test).reshape(-1,256,256,3)
x=cv2.resize(training_data[0][0],(256,256))
plt.imshow(x,cmap='gray')
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Resizing images
Resizing images

Creating the pickle files

def save_training_data(x_train,y_train):
pickle_out=open("x_train_coloured.pickle","wb")
pickle.dump(x_train,pickle_out)
pickle_out.close()
pickle_out=open("y_train_coloured.pickle","wb")
pickle.dump(y_train,pickle_out)
pickle_out.close
save_training_data(x_train,y_train)
def save_testing_data(x_test,y_test):
pickle_out=open("x_test_coloured.pickle","wb")
pickle.dump(x_test,pickle_out)
pickle_out.close()
pickle_out=open("y_test_coloured.pickle","wb")
pickle.dump(y_test,pickle_out)
pickle_out.close()
save_testing_data(x_test,y_test)
def load_data():
pickle_in = open("x_train_coloured.pickle","rb")
x_train = pickle.load(pickle_in)
return x_train
view raw gistfile1.txt hosted with ❤ by GitHub

Model

K.clear_session()
model = Sequential()
model.add(layers.Conv2D(32,(3,3),padding='same',input_shape=(256,256,3),activation='relu'))
model.add(layers.Conv2D(32,(3,3),activation='relu'))
model.add(layers.MaxPool2D(pool_size=(8,8)))
model.add(layers.Conv2D(32,(3,3),padding='same',activation='relu'))
model.add(layers.Conv2D(32,(3,3),activation='relu'))
model.add(layers.MaxPool2D(pool_size=(8,8)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(layers.Dense(256,activation='relu'))
model.add(layers.Dense(4,activation='softmax'))
model.compile(loss = 'categorical_crossentropy',optimizer = 'rmsprop',metrics = ['accuracy'])
model.summary()
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Model: “sequential”
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 256, 256, 32) 896
_________________________________________________________________
conv2d_1 (Conv2D) (None, 254, 254, 32) 9248
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 31, 31, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 31, 31, 32) 9248
_________________________________________________________________
conv2d_3 (Conv2D) (None, 29, 29, 32) 9248
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 3, 3, 32) 0
_________________________________________________________________
activation (Activation) (None, 3, 3, 32) 0
_________________________________________________________________
flatten (Flatten) (None, 288) 0
_________________________________________________________________
dense (Dense) (None, 256) 73984
_________________________________________________________________
dense_1 (Dense) (None, 4) 1028
=================================================================
Total params: 103,652
Trainable params: 103,652
Non-trainable params: 0
_________________________________________________________________

y_train_cat = to_categorical(y_train,4)
y_test_cat = to_categorical(y_test,4)
history = model.fit(x_train, y_train_cat, batch_size=32, epochs=10, verbose=1, validation_split=0.15, shuffle=True)
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Epoch 1/10
 2/42 [>.............................] - ETA: 4s - loss: 33.4274 - accuracy: 0.4062WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0359s vs `on_train_batch_end` time: 0.0988s). Check your callbacks.
42/42 [==============================] - 6s 140ms/step - loss: 4.3365 - accuracy: 0.4440 - val_loss: 5.3007 - val_accuracy: 0.3276
Epoch 2/10
42/42 [==============================] - 6s 135ms/step - loss: 1.2223 - accuracy: 0.5103 - val_loss: 2.2340 - val_accuracy: 0.4095
Epoch 3/10
42/42 [==============================] - 6s 134ms/step - loss: 0.8702 - accuracy: 0.6398 - val_loss: 1.6332 - val_accuracy: 0.4698
Epoch 4/10
42/42 [==============================] - 5s 120ms/step - loss: 0.6871 - accuracy: 0.7380 - val_loss: 0.5808 - val_accuracy: 0.7198
Epoch 5/10
42/42 [==============================] - 6s 133ms/step - loss: 0.5256 - accuracy: 0.7761 - val_loss: 0.7016 - val_accuracy: 0.7457
Epoch 6/10
42/42 [==============================] - 6s 133ms/step - loss: 0.4148 - accuracy: 0.8378 - val_loss: 0.8888 - val_accuracy: 0.7155
Epoch 7/10
42/42 [==============================] - 6s 135ms/step - loss: 0.3828 - accuracy: 0.8462 - val_loss: 0.6643 - val_accuracy: 0.7931
Epoch 8/10
42/42 [==============================] - 5s 123ms/step - loss: 0.2999 - accuracy: 0.8919 - val_loss: 0.3769 - val_accuracy: 0.8664
Epoch 9/10
42/42 [==============================] - 5s 125ms/step - loss: 0.2474 - accuracy: 0.9177 - val_loss: 0.3600 - val_accuracy: 0.9009
Epoch 10/10
42/42 [==============================] - 5s 130ms/step - loss: 0.1429 - accuracy: 0.9528 - val_loss: 0.2745 - val_accuracy: 0.8966

Save the model

# save the model
model.save("leaf_disease_coloured.h5")
new_model = tf.keras.models.load_model("leaf_disease_coloured.h5")
view raw gistfile1.txt hosted with ❤ by GitHub

Loss and Accuracy of the model

loss, acc = new_model.evaluate(x_test,y_test_cat, verbose=2)
print('Restored model, accuracy: {:5.2f}%'.format(100*acc))
view raw gistfile1.txt hosted with ❤ by GitHub

output:

18/18 - 1s - loss: 0.1902 - accuracy: 0.9304
Restored model, accuracy: 93.04%

The Metrics

# train_loss vs Val_loss
from matplotlib import pyplot as plt
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Model Loss
Model Loss

# train_accuracy vs val_accuracy
from matplotlib import pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Model Accuracy
Model Accuracy

Custom Predictions

img = cv2.resize(x_test[0],(256,256))
plt.imshow(img)
view raw gistfile1.txt hosted with ❤ by GitHub

output:

Predictions
Predictions

img = img.reshape(-1,256,256,3)
predict_class = new_model.predict_classes(img)
categories[predict_class[0]]
view raw gistfile1.txt hosted with ❤ by GitHub

output:

\'Healthy\'

Cainvas Gallery: https://cainvas.ai-tech.systems/gallery/

Conclusion

We’ve trained our Deep Learning model using TensorFlow and Keras for detecting grape leaf disease and got an accuracy of 93%.

Notebook link is here

Credit: Om Chaithanya V

 

You may also be interested in 

Become a Contributor: Write for AITS Publication Today! We’ll be happy to publish your latest article on data science, artificial intelligence, machine learning, deep learning, and other technology topics